Exercise 29

(a) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=e^{x-1} \mathbf{i}+x y \mathbf{j}$ and C is given by $r(t)=t^{2} \mathbf{i}+t^{3} \mathbf{j}, 0 \leq t \leq 1$.
(b) Illustrate part (a) by using a graphing calculator or computer to graph C and the vectors from the vector field corresponding to $t=0,1 / \sqrt{2}$, and 1 (as in Figure 13).

Solution

With this parameterization in t, the line integral becomes

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle e^{x(t)-1}, x(t) y(t)\right\rangle \cdot \frac{d}{d t}\left\langle t^{2}, t^{3}\right\rangle d t \\
& =\int_{0}^{1}\left\langle e^{t^{2}-1},\left(t^{2}\right)\left(t^{3}\right)\right\rangle \cdot\left\langle 2 t, 3 t^{2}\right\rangle d t \\
& =\int_{0}^{1}\left[e^{t^{2}-1}(2 t)+t^{5}\left(3 t^{2}\right)\right] d t \\
& =\int_{0}^{1}\left(2 t e^{t^{2}-1}+3 t^{7}\right) d t \\
& =\int_{0}^{1} 2 t e^{t^{2}-1} d t+3 \int_{0}^{1} t^{7} d t
\end{aligned}
$$

Make the following substitution in the first integral.

$$
\begin{aligned}
u & =t^{2}-1 \\
d u & =2 t d t
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0^{2}-1}^{1^{2}-1} e^{u} d u+3 \int_{0}^{1} t^{7} d t \\
& =\int_{-1}^{0} e^{u} d u+3 \int_{0}^{1} t^{7} d t \\
& =\left(1-e^{-1}\right)+3\left(\frac{1}{8}\right) \\
& =\frac{11}{8}-e^{-1}
\end{aligned}
$$

Below is a plot of the vectors from the vector field corresponding to $t=0,1 / \sqrt{2}$, and 1 .

